On the semilocal convergence of a fast two-step Newton method Convergencia semilocal de un método de Newton de dos pasos

نویسندگان

  • Ioannis K. Argyros
  • IOANNIS K. ARGYROS
چکیده

Abstract. We provide a semilocal convergence analysis for a cubically convergent two-step Newton method (2) recently introduced by H. Homeier [8], [9], and also studied by A. Özban [13]. In contrast to the above works we examine the semilocal convergence of the method in a Banach space setting, instead of the local in the real or complex number case. A comparison is given with a two step Newton–like method using the same information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Convergence and Complexity Analysis for the Interpolatory Newton Method

We provide an improved compared to [5]–[7] local convergence analysis and complexity for the interpolatory Newton method for solving equations in a Banach space setting. The results are obtained using more precise error bounds than before [5]–[7] and the same hypotheses/computational cost. RESUMEN Nosotros entregamos aqúı un análisis de convergencia local y complejidad para el método de interpo...

متن کامل

On Semilocal Convergence of Inexact Newton Methods

Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...

متن کامل

On Semilocal Convergence of Inexact Newton

Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...

متن کامل

On the solution of generalized equations and variational inequalities

Uko and Argyros provided in [18] a Kantorovich–type theorem on the existence and uniqueness of the solution of a generalized equation of the form f(u)+g(u) ∋ 0, where f is a Fréchet–differentiable function, and g is a maximal monotone operator defined on a Hilbert space. The sufficient convergence conditions are weaker than the corresponding ones given in the literature for the Kantorovich theo...

متن کامل

Semilocal and global convergence of the Newton-HSS method for systems of nonlinear equations

Newton-HSS methods, that are variants of inexact Newton methods different from Newton-Krylov methods, have been shown to be competitive methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices [Bai and Guo, 2010]. In that paper, only local convergence was proved. In this paper, we prove a Kantorovich-type semilocal convergence. Then we introduce N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008